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The Thermal History of the Universe

The Universe is expanding,
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and cooling.
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temperature
and the matter in the Universe changes states as the universe cools
. (¥ ] 400,000 years today! 14 billion years
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The Expansion History of the Universe
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The Expansion History of the Universe
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The History of Structure in the Universe

gravitational evolution of perturbations in

time

Self-gravity of perturbations competes with expansion of
the Universe
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The History of Structure in the Universe
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The History of Structure in the Universe
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The History of Structure in the Universe
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History of Structure in the Universe: Summary

(Kravtsov)
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History of Structure in the Universe: Summary

(Kravtsov)
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Structure in the Universe
History of Structure in the Universe: Summary

Z= 6.20

\_/ s (Kravtsov;
evolution of density
perturbations tells us
about dark energy &

types of matter present
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Structure in the Universe

Galaxy Distribution Mapped by SDSS

Cosmic Microwave Background Anisotropy

Planck

Eisenstein anc‘i. SDSS Collaboration

today! 14 billion years
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Many opportunltles to learn about structurel!

I__arge Synoptic Survey .
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Dark Energy Sur , uclid
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structure surveys i
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background

South Pole Telesc
Subaru Hyper Suprime Cam and _Ou ‘O = E R OEe

Prime Focus Spectrograph

Hobby- Eberly Telescope
Dark Enengy EXperlmen’r :
* @ 21 CM experiments (CHIME,

b i, HIRAX) Simons Observatory

And much to learn! (inflation, dark energy, neutrino properties)




Recap: The evolution of structure
depends on the expansion history of
the Universe
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Large-scale Structure Beyond Cold Dark Matter

(I) Massive Neutrinos

(TianNu simulation, Yu et al 2016)




Large-scale Structure Beyond Cold Dark Matter

(I) Massive Neutrinos

Pv
Ocdm + Pbaryon +Qv

= 0.005

ny, ~ lolonbaryon

(TianNu simulation, Yu et al 2016)
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Large-scale Structure Beyond Cold Dark Matter

(I) Quintessence

(scalar field dark energy) ¢ ../ & 2. T
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(Springel)



Large-scale Structure Beyond Cold Dark Matter

(I) Quintessence

could dark

energy cluster 5 : |
tOO7 (Springel)




The Formation of (nonlinear)
Structure



Large-scale Structure

matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
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matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
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matter = cold dark matter (CDM), baryons
(behaves like CDM, mostly), massive
neutrinos, . . . ?!
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matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
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Accurate models of the large-scale matter distribution, and the
large-scale galaxy distribution are crucial for extracting
cosmological information from cosmological datasets



Large-scale Structure

when matter density fluctuations are small,
can linearize the equations and gravitational
evolution is easy



Large-scale Structure

when matter density fluctuations
become large (0p/p ~1) gravity
couples modes, evolution is hard!
Need simulations or tricks




Large-scale Structure

matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
N . st "'"?c;’ ‘
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2 ¥ 2 ¥
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(Springel)

A particularly hard thing to understand is
relationship between galaxy distribution and the
matter distribution




Large-scale Structure

matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
L ! X _ }25 ,v.vqcz:
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(Springel)

Understanding the relationship between the galaxies
and the matter is even harder when there is more
than one type of matter around!

(e.g. our universe! which, at least has neutrino dark matter and
possibly dynamical dark energy or quintessence)
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matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
..,\ oA " . L ? i
. ol \“ . ‘
(Springel)
An
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step
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matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
. : \
H 2% 4 p
Py *_ i < . g
V- X 2 ¥

T gt
galaxies live in (Springel)
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intermediate
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dark matter “halos”




Large-scale Structure

matter distribution 6m = 6pm/pm galaxy distribution 85 = 8ng/ng
L ! i 425 ,v.vqcz:
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s (Springel) (Springel)

on large scales, halos and galaxy abundances vary with matter
density, but the fractional over/under-densities are not identical

ng(x) = Fg(l + 8g(x))z om(X) = pom(1 + 8m(x))

ngdlﬂgﬁm =~ b o
dém
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matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
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Large-scale Structure

matter distribution &m = 8pm/pPm
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Large-scale Structure

matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
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the bias

A parameter that depends on mass, luminosity or
other properties of the tracer

ngdlﬂﬁm ~ b &
ddm




Large-scale Structure

matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
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*From now on
use halo bias .
and galaxy and th e b 1asS
galaxy bias
interchangeably
, even though

the truth is 59 ~ dlnng 5

more

complicated!
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matter distribution 6m = 8pm/pm galaxy distribution 85 = 8ng/ng
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It's generally much :
easier to predict O, but the bias

much easier to observe

0, so understanding

ngdlﬂﬁm ~ b &
ddm

bias is important




Separate Universe Approach

(To nonlinear evolution and bias)



Separate Universe Approach

The bias is a measure of the response of the number
of halos to a long wavelength density fluctuation

B d(;“”h 5N | ge
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Separate Universe Approach

The bias is a measure of the response of the number
of halos to a long wavelength density fluctuation

8h ~ dlnnh Sm ~ b Sm
ddm

Usually measure by b
correlating halo Nh(X) = (1 + 8n(x))

fluctuation 8n(x) with o~

matter fluctuation &m(x) 5 0
m 2

b = <8h(X1)8m(X2)>/<8m(X1)8m(x2)>




Separate Universe Approach

The bias is a measure of the response of the number
of halos to a long wavelength density fluctuation

B d(;“”h 5N | ge
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But from this
perspective, can also

Nh(x) = Nh(l + 8n(x)) Nh(x) = nNn(l + 8n(x))
/6m >O\ \ /
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Separate Universe Approach

The bias is a measure of the response of the number
of halos to a long wavelength density fluctuation

B d(;“”h 5N | ge

m

But from this
perspective, can also

Nh(x) = Nh(l + 8n(x)) Nh(x) = nNn(l + 8n(x))
/5 >O\ \ /
i &n,< O

]. nh(am > O) = nh(Sm < O)

b =
s 2 Om




Separate Universe Approach

Similarly, the “squeezed” bispectrum is a measure of the response
of the small-scale power spectrum to a long-wavelength mode



Separate Universe Approach

Similarly, the “squeezed” bispectrum is a measure of the response
of the small-scale power spectrum to a long-wavelength mode

P(K, X) % P(K)average + "apé") §1n(x)

oP(k)
56 P(kL)

B(k ’ -k -kL/ kL) ~

P(k) = P(K)average(l + 8P)

P(k) o p(k)average /\,\/\/\’\r / \/V\//\’\‘\

Om = 0 5500




Separate Universe Approach

The Separate Universe Approach formalizes this

average density region Our universe

8m=o



Separate Universe Approach

The Separate Universe Approach formalizes this

average density region Our universe
T Fle Qi
8m - O
Large overdense region Separa’re, Closed Universe
/ \ — Qmw, Qaw, Quw, hw, .
&m > O

(i.e. universe w/different
cosmological parameters)




Separate Universe Approach

The Separate Universe Approach formalizes this

Large overdense region Separate, Closed Universe

/ \ _ Qmw, Oaw, Qxw, hw, . ..

O >0

To study coupling
between 6, and small

scale modes, or halo
abundance, just run
calculations with the
new cosmological
parameters!

Om, Oa, Ok, 00 Omw, Qaw, Oxw, hw,

n>0



Separate Universe Approach

The Separate Universe Approach formalizes this

Large overdense region Separate, Closed Universe

/ \ — Omw, Oaw, Oww, hw, ..

O >0

So far, restricted to CDM and ACDM so that there
is only one type of energy fluctuation &,




Separate Universe Approach

What if?
Large overdense region

Oneutrino > O &= ??

6quin’ressence >0
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What if?
Large overdense region
(X

Sneutringt> O does this look like a
separate, curved

universe with

/ > O\ Qmw, Oneutrinow, Qkw, Nw, . . .

6quin’ressence > O or
Qmw, Qaw, Qxw, hw. . .

??




Separate Universe Approach

What if?
Large overdense region
(X

Sneutringt> O does this look like a
separate, curved

universe with

/ > O\ Qmw, Oneutrinow, Qkw, Nw, . . .

6quin’ressence >0 or

In particular, another fluid may have non- Omw, Qaw, Qxw, Aw, ..
gravitational interactions or other behavior 22
that prevents the energies from evolving .
like they would in a separate universe




Separate Universe Approach

In particular, another fluid may have non-gravitational
interactions or other behavior that prevents it from
evolving like a separate universe

Example I

quick thought experiment: initially coherent matter and neutrino perturbations

Sm, 81“

I8neu’rrno

8neu’rrino 8neu’rrino

time




Separate Universe Approach

In particular, another fluid may have non-gravitational
interactions or other behavior that prevents it from
evolving like a separate universe

Example I

quick thought experiment: initially coherent matter and neutrino perturbations

Sm, 81“

I8neu’rrno 8neu’rrino 8neu’rrino

om (aw) =~ aw™®  but pneutrino (aw) dilutes faster time




Separate Universe Approach

Example 1

quick thought experiment: initially coherent matter and neutrino perturbations

Bneu’rrino Oneutrino 8neu’rrino

om(aw) T aw™>  but pneutrino(aw) dilutes faster time




Separate Universe Approach

Example 1

quick thought experiment: initially coherent matter and neutrino perturbations

On the other hand, a very large scale perturbation

n l 8neu’rrino

time




Neutrinos Aside:

This scale-dependent growth is the effect that gives main cosmological
constraints on neutrino mass

large-scales the same small scales damped
.1
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Degenerate m,,=0.1 eV
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Neutrinos Aside:

massive neutrinos reduce the typical amplitude of density perturbations

—> less gravitational lensing than a
universe where all matter is
gravitationally clustered

Normal

Inverted

Degenerate m,;=0.1 eV
Degenerate m,;=0.2 eV
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. 107 10
Fourier mode

Bond, Efstathiou, Silk 1980
Hu, Eisenstein, Tegmark 1998
LSS



Neutrinos Aside:

massive neutrinos reduce the typical amplitude of density perturbations

Current constraints from CMB

Planck TT+lowP
+lensing (reconstruction)
+ext (SN + BAO)

Planck TT,TE EE+lowP
~+lensing

+ext
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Neutrinos Aside:

Future: “Stage IV CMB"
O, =~ 0.02 eV ??

3 0 detection of Normal
Hierarchy (0.06eV)
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Abazajian et al 2013

CMB 5S4, LSST (Large Synoptic Survey Telescope), DESI (Dark Energy
Spectroscopic Instrument), WFIRST, Euclid (ESA mission), SPHEREx . . .



Separate Universe Approach
Example II

quick thought experiment: initially coherent matter and quintessence perturbations
below quintessence Jeans scale

8m/ 8Q

oQ dQ oQ
QOb ‘

time




Separate Universe Approach
Example II

quick thought experiment: initially coherent matter and quintessence perturbations
below quintessence Jeans scale

8m/ 8Q

oQ oQ oQ
QOb ‘

om (@w) T aw™  pq (aw) pressure supported, dilutes faster relative to pm fime

>

Hu, Chiang, Li, ML 1605.01412



Separate Universe Approach
Example II

quick thought experiment: initially coherent matter and quintessence perturbations
above quintessence Jeans scale

8m/ 8Q

8m/ 8Q

8m, 8Q

L/

Hu, Chiang, Li, ML 1605.01412




Separate Universe

It turns out that even in the funny, sub-Jeans cases one can still construct a “fake
separate universe”

Separate Universe with additional weird energy

Large overdense region densities
/ > O\ Qmw, Qneutrinow, QKW, QSW, hW, o
Oneutrino > O Omw, Qaw, Oww, Qsw, Nw, . ..

5quin’ressence >0

Hu, Chiang, Li, ML 1605.01412




Separate Universe

It turns out that even in the funny, sub-Jeans cases one can still construct a “fake
separate universe”

Separate Universe with additional weird energy

Large overdense region densities
/ > O\ Qmw, Qneutrinow, QKW, QSW, hW, o
Oneutrino > O Omw, Qaw, Oww, Qsw, Nw, . ..

But the separate universe

S = construction is still well-
>0 defined if we know evolution

qU||| essence
O| 6CCIIII / 8|I€U|Iin01 8QUiII|€SS€|IC€

Hu, Chiang, Li, ML 1605.01412




Separate Universe

It turns out that even in the funny, sub-Jeans cases one can still construct a “fake
separate universe”

But the separate universe
construction is still well-defined
if we know evolution of

6cdm('|') ’ Sneu’rrino(f)z 5Quin’ressence(‘i')

Large overdense region

/ >O\

Oneutrino > O

define local expansion histor
5quin’ressence >0 P 4

aw(t), Hw(t)

Hu, Chiang, Li, ML 1605.01412




Separate Universe Logic Applied to
Spherical Collapse Model for Halos
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Spherical Collapse Model for Halos
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Separate Universe Logic Applied to
Spherical Collapse Model for Halos
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Separate Universe Logic Applied to
Spherical Collapse Model for Halos

8neu’rrino
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Separate Universe Logic Applied to
Spherical Collapse Model for Halos

Sneutrino Solve the nonlinear evolution of
(spherical cow
halo) in two regions

8neu’rrino

&
Rhalo(1)




Separate Universe Logic Applied to
Spherical Collapse Model for Halos

Sneutrino Solve the nonlinear evolution of
(spherical cow
halo) in two regions

R(t)

W "
collapse

8neu’rrino

&
Rhalo(1)




Separate Universe Logic Applied to
Spherical Collapse Model for Halos

Sneutrino Solve the nonlinear evolution of
(spherical cow
halo) in two regions

Simplest prediction for number of
halos that can collapse by time t

n(M,t | 8m(t) )

8neu’rrino

&
Rhalo(1)




Separate Universe Logic Applied to
Spherical Collapse Model for Halos

Sneutrino Solve the nonlinear evolution of
(spherical cow
halo) in two regions

Simplest prediction for number of
halos that can collapse by time t

n(M,t | 8n(t) ) $

Determine response bias in each region

8neu’rrino

1 nh(8m > O) = nh(am < O)

e 2 6.
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Halo bias - simplest model
In a universe with massive neutrinos:

general, where |
| Ab _ b -1 £ L0
_b ey b ( FV) pCdm+pV

b(K) = ~/Prn(K)/Pmm(K)
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Observational consequences
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Observational consequences

Scale-dependent change in the halo bias:

& < b -1 (# F.) where £ Ov

b b 7 Ocdm+Qv

The fraction of energy in neutrinos may be tiny (f, = 0.5%)

Why care about such a small change to the halo bias?

e Because the feature in the halo bias can be
used to measure neutrino mass

e Because this may be a serious systematic for
measurements of m, from galaxy clustering

(ML 2014)
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matter and quintessence perturbations below the quintessence Jeans scale

matter and quintessence perturbations above the quintessence Jeans scale
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Application of the Fake Separate Universe
Approach

matter and quintessence perturbations below the quintessence Jeans scale
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Application of the Fake Separate Universe
Approach
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Application of the Fake Separate Universe
Approach

om > 0, 8q =0 Run sims with each background evolution

dm> 0,8 >0
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Application of the Fake Separate Universe

Amplitude of Power Spectrum is different at Final time

sub—Jeans simulations
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Application of the Fake Separate Universe

Amplitude of Power Spectrum is different at Final time
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Application of the Fake Separate Universe

Abundance of Halos, and so halo bias b, is different at final time
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Application of the Fake Separate Universe

The difference between super and sub Jeans scale would
correspond to a scale-dependent difference in non-linear quantities

—— sub—Jeans e.g.

b = <8h(X1)8m(X2)>/ <Bm(X1)8m(x2)>

- - super—Jeans

for |x: - x2| < Jeans scale

2 <8h(X1)8m(X2)>/ <8m(X1)8m(X2)>

for Ix; - x2| > Jeans scale
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Application of the Fake Separate Universe
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Application of the Fake Separate Universe

- —— sub—Jeans PHS11 model
Our results super—Jeans - .- L14 model
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Application of the Fake Separate Universe

Our results

are consistent
with

Ab /b, = const

and with
spherical cow
model
and are
inconsistent
with
constant
Lagrangian
bias w.r.t
initial Prmm(K)

ison against two models in the

literature
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Conclusions

@ Nonlinear structure formation is complicated! But, can lead to
new phenomena that may provide new insights into neutrinos,
quintessence, and beyond!

) The separate universe can be extended to situations with non-gravitational
forces and a Jeans scale

@  This method provides a trick for being able to simulate (a limited set of
important observables) in cosmologies with multiple fluids and non-gravitational
forces

®  The presence of a Jeans scale can lead to new observables (scale dependent

bias, scale-dependent squeezed bispectrum)

@ The distinction between super/sub-Jeans observables can be understood as a
difference in the local expansion history in the two regimes - a local model of
halo bias can not capture this



